73 research outputs found

    A Regularized Newton Method for Computing Ground States of Bose-Einstein condensates

    Full text link
    In this paper, we propose a regularized Newton method for computing ground states of Bose-Einstein condensates (BECs), which can be formulated as an energy minimization problem with a spherical constraint. The energy functional and constraint are discretized by either the finite difference, or sine or Fourier pseudospectral discretization schemes and thus the original infinite dimensional nonconvex minimization problem is approximated by a finite dimensional constrained nonconvex minimization problem. Then an initial solution is first constructed by using a feasible gradient type method, which is an explicit scheme and maintains the spherical constraint automatically. To accelerate the convergence of the gradient type method, we approximate the energy functional by its second-order Taylor expansion with a regularized term at each Newton iteration and adopt a cascadic multigrid technique for selecting initial data. It leads to a standard trust-region subproblem and we solve it again by the feasible gradient type method. The convergence of the regularized Newton method is established by adjusting the regularization parameter as the standard trust-region strategy. Extensive numerical experiments on challenging examples, including a BEC in three dimensions with an optical lattice potential and rotating BECs in two dimensions with rapid rotation and strongly repulsive interaction, show that our method is efficient, accurate and robust.Comment: 25 pages, 6 figure

    On the Convergence of the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory

    Full text link
    It is well known that the self-consistent field (SCF) iteration for solving the Kohn-Sham (KS) equation often fails to converge, yet there is no clear explanation. In this paper, we investigate the SCF iteration from the perspective of minimizing the corresponding KS total energy functional. By analyzing the second-order Taylor expansion of the KS total energy functional and estimating the relationship between the Hamiltonian and the part of the Hessian which is not used in the SCF iteration, we are able to prove global convergence from an arbitrary initial point and local linear convergence from an initial point sufficiently close to the solution of the KS equation under assumptions that the gap between the occupied states and unoccupied states is sufficiently large and the second-order derivatives of the exchange correlation functional are uniformly bounded from above. Although these conditions are very stringent and are almost never satisfied in reality, our analysis is interesting in the sense that it provides a qualitative prediction of the behavior of the SCF iteration

    Gradient type optimization methods for electronic structure calculations

    Full text link
    The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its gradient and the projection onto the manifold. These tasks are cheaper than eigenvalue computation and they are often more suitable for parallelization as long as the evaluation of the total energy functional and its gradient is efficient. Numerical results show that they can outperform SCF consistently on many practically large systems.Comment: 24 pages, 11 figures, 59 references, and 1 acknowledgement

    An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

    Full text link
    This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classic alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity
    • …
    corecore